Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.467
1.
Mol Brain ; 17(1): 10, 2024 Feb 17.
Article En | MEDLINE | ID: mdl-38368400

The anatomical organization of the rodent claustrum remains obscure due to lack of clear borders that distinguish it from neighboring forebrain structures. Defining what constitutes the claustrum is imperative for elucidating its functions. Methods based on gene/protein expression or transgenic mice have been used to spatially outline the claustrum but often report incomplete labeling and/or lack of specificity during certain neurodevelopmental timepoints. To reliably identify claustrum projection cells in mice, we propose a simple immunolabelling method that juxtaposes the expression pattern of claustrum-enriched and cortical-enriched markers. We determined that claustrum cells immunoreactive for the claustrum-enriched markers Nurr1 and Nr2f2 are devoid of the cortical marker Tle4, which allowed us to differentiate the claustrum from adjoining cortical cells. Using retrograde tracing, we verified that nearly all claustrum projection neurons lack Tle4 but expressed Nurr1/Nr2f2 markers to different degrees. At neonatal stages between 7 and 21 days, claustrum projection neurons were identified by their Nurr1-postive/Tle4-negative expression profile, a time-period when other immunolabelling techniques used to localize the claustrum in adult mice are ineffective. Finally, exposure to environmental novelty enhanced the expression of the neuronal activation marker c-Fos in the claustrum region. Notably, c-Fos labeling was mainly restricted to Nurr1-positive cells and nearly absent from Tle4-positive cells, thus corroborating previous work reporting novelty-induced claustrum activation. Taken together, this method will aid in studying the claustrum during postnatal development and may improve histological and functional studies where other approaches are not amenable.


Claustrum , Mice , Animals , Basal Ganglia/metabolism , Neurons/physiology , Mice, Transgenic , Interneurons
2.
Behav Brain Res ; 459: 114757, 2024 02 29.
Article En | MEDLINE | ID: mdl-37952684

Huntington's disease is a neurodegenerative illness that causes neuronal death most extensively within the basal ganglia. There is a broad class of neurologic disorders associated with the expansion of polyglutamine (polyQ) repeats in numerous proteins. Several other molecular mechanisms have also been implicated in HD pathology, including brain-derived neurotrophic factor (BDNF), mitochondrial dysfunction, and altered synaptic plasticity in central spiny neurons. HD pathogenesis and the effectiveness of therapy approaches have been better understood through the use of animal models. The pathological manifestations of the disease were reproduced by early models of glutamate analog toxicity and mitochondrial respiration inhibition. Because the treatments available for HD are quite limited, it is important to have a definite preclinical model that mimics all the aspects of the disease. It can be used to study mechanisms and validate candidate therapies. Although there hasn't been much success in translating animal research into clinical practice, each model has something special to offer in the quest for a deeper comprehension of HD's neurobehavioral foundations. This review provides insight into various in-vitro-and in-vivo models of HD which may be useful in the screening of newer therapeutics for this incapacitating disorder.


Huntington Disease , Animals , Interneurons/metabolism , Neurites , Basal Ganglia/metabolism , Disease Models, Animal , Huntingtin Protein
3.
Brain Res ; 1823: 148672, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37956748

Deep brain stimulation (DBS) of the globus pallidus internus (entopeduncular nucleus, EPN, in rodents) is important for the treatment of drug-refractory dystonia. The pathophysiology of this movement disorder and the mechanisms of DBS are largely unknown. Insights into the mechanisms of DBS in animal models of dystonia can be helpful for optimization of DBS and add-on therapeutics. We recently found that short-term EPN-DBS with 130 Hz (50 µA, 60 µs) for 3 h improved dystonia in dtsz hamsters and reduced spontaneous excitatory cortico-striatal activity in brain slices of this model, indicating fast effects on synaptic plasticity. Therefore, in the present study, we examined if these effects are related to changes of c-Fos, a marker of neuronal activity, in brains derived from dtsz hamsters after these short-term DBS or sham stimulations. After DBS vs. sham, c-Fos intensity was increased around the electrode, but the number of c-Fos+ cells was not altered within the whole EPN and projection areas (habenula, thalamus). DBS did not induce changes in striatal and cortical c-Fos+ cells as GABAergic (GAD67+ and parvalbumin-reactive) neurons in motor cortex and striatum. Unexpectedly, c-Fos+ cells were decreased in deep cerebellar nuclei (DCN) after DBS, suggesting that cerebellar changes may be involved in antidystonic effects already during short-term DBS. However, the present results do not exclude functional changes within the basal ganglia-thalamo-cortical network, which will be further investigated by long-term EPN stimulations. The present study indicates that the cerebellum deserves attention in ongoing examinations on the mechanisms of DBS in dystonia.


Deep Brain Stimulation , Dystonia , Cricetinae , Animals , Dystonia/therapy , Entopeduncular Nucleus , Basal Ganglia/metabolism , Globus Pallidus , Disease Models, Animal , Cerebellum
4.
Ir J Med Sci ; 193(1): 449-456, 2024 Feb.
Article En | MEDLINE | ID: mdl-37523070

BACKGROUND: Aminoacylase-1 deficiency (ACY1D) is an autosomal recessive rare inborn error of metabolism, which is caused by disease-causing variants in the ACY1. This disorder is characterized by increased urinary excretion of specific N-acetyl amino acids. Affected individuals demonstrate heterogeneous clinical manifestations which are primarily neurologic problems. In neuroimaging, corpus callosum hypoplasia, cerebellar vermis atrophy, and delayed myelination of cerebral white matter have been reported. AIMS: Finding disease-causing variant and expanding imaging findings in a patient with persistent basal ganglia involvement. METHODS: Whole-exome sequencing was performed in order to identify disease-causing variants in an affected 5-year-old male patient who presented with neurologic regression superimposed on neurodevelopmental delay following a febrile illness. He had inability to walk, cognitive impairment, speech delay, febrile-induced seizures, truncal hypotonia, moderate to severe generalized dystonia, and recurrent metabolic decompensation. RESULTS: All metabolic tests were normal except for a moderate metabolic acidosis following febrile illnesses. The results of serial brain magnetic resonance imaging (MRI) at ages 1 and 4.5 years revealed persistent bilateral and symmetric abnormal signals in basal ganglia mainly caudate and globus pallidus nuclei with progression over time in addition to a mild supratentorial atrophy. A homozygous missense variant [NM_000666.3: c.1057C>T; p.(Arg353Cys)] was identified in the ACY1, consistent with aminoacylase-1 deficiency. Variant confirmation in patient and segregation analysis in his family were performed using Sanger sequencing. CONCLUSIONS: Our findings expanded the phenotype spectrum of ACY1-related neurodegeneration by demonstrating persistent basal ganglia involvement and moderate to severe generalized dystonia.


Amidohydrolases/deficiency , Amino Acid Metabolism, Inborn Errors , Dystonia , Male , Humans , Child, Preschool , Dystonia/metabolism , Dystonia/pathology , Mutation , Basal Ganglia/metabolism , Basal Ganglia/pathology , Atrophy/metabolism , Atrophy/pathology , Magnetic Resonance Imaging
5.
Curr Rev Clin Exp Pharmacol ; 19(2): 163-172, 2024.
Article En | MEDLINE | ID: mdl-37403385

The 5-HT syndrome in rats is composed of head weaving, body shaking, forepaw treading, flat body posture, hindlimb abduction, and Straub tail. The importance of the brainstem and spinal cord for the syndrome is underlined by findings of 5,7-dihydroxytryptamine (5,7-DHT)-induced denervation supersensitivity in response to 5-HT-stimulant drugs. For head weaving and Straub tail, supersensitivity occurred when the neurotoxin was injected into the cisterna magna or spinal cord, for forepaw treading in cisterna magna, and for hindlimb abduction in the spinal cord. Although 5,7- DHT-related body shaking increased in the spinal cord, the sign decreased when injected into the striatum, indicating the modulatory influence of the basal ganglia. Further details on body shaking are provided by its reduced response to harmaline after 5-HT depletion caused by intraventricular 5,7-DHT, electrolytic lesions of the medial or dorsal raphe, and lesions of the inferior olive caused by systemic injection of 3-acetylpyridine along with those found in Agtpbp1pcd or nr cerebellar mouse mutants. Yet the influence of the climbing fiber pathway on other signs of the 5-HT syndrome remains to be determined.


Serine-Type D-Ala-D-Ala Carboxypeptidase , Serotonin , Rats , Animals , Mice , Serotonin/pharmacology , Rats, Inbred Strains , Tremor/chemically induced , Brain Stem/metabolism , Basal Ganglia/metabolism , GTP-Binding Proteins/adverse effects , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism
6.
Nat Commun ; 14(1): 6712, 2023 10 23.
Article En | MEDLINE | ID: mdl-37872145

In the classical model of the basal ganglia, direct pathway striatal projection neurons (dSPNs) send projections to the substantia nigra (SNr) and entopeduncular nucleus to regulate motor function. Recent studies have re-established that dSPNs also possess axon collaterals within the globus pallidus (GPe) (bridging collaterals), yet the significance of these collaterals for behavior is unknown. Here we use in vivo optical and chemogenetic tools combined with deep learning approaches in mice to dissect the roles of dSPN GPe collaterals in motor function. We find that dSPNs projecting to the SNr send synchronous motor-related information to the GPe via axon collaterals. Inhibition of native activity in dSPN GPe terminals impairs motor activity and function via regulation of Npas1 neurons. We propose a model by which dSPN GPe axon collaterals (striatopallidal Go pathway) act in concert with the canonical terminals in the SNr to support motor control by inhibiting Npas1 neurons.


Axons , Neurons , Mice , Animals , Neurons/metabolism , Axons/metabolism , Globus Pallidus/physiology , Corpus Striatum/metabolism , Basal Ganglia/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
7.
Mol Cell Neurosci ; 126: 103883, 2023 09.
Article En | MEDLINE | ID: mdl-37527694

There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.


Mucuna , Parkinson Disease , Plant Extracts , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Glutamic Acid/metabolism , Biomarkers/metabolism , Motor Cortex/drug effects , Motor Cortex/metabolism , Motor Cortex/pathology , Mucuna/chemistry , Plant Extracts/administration & dosage , Gait/drug effects , Pars Compacta/metabolism , Pars Compacta/pathology , Basal Ganglia/metabolism , Basal Ganglia/pathology , Animals , Mice
8.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article En | MEDLINE | ID: mdl-37511603

Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.


Edinger-Westphal Nucleus , Parkinson Disease , Animals , Rats , Basal Ganglia/metabolism , Dopamine/metabolism , Down-Regulation , Edinger-Westphal Nucleus/metabolism , Levodopa/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Rotenone/metabolism , Substantia Nigra/metabolism
9.
Brain Struct Funct ; 228(8): 1865-1884, 2023 Nov.
Article En | MEDLINE | ID: mdl-37306809

The basal ganglia are important modulators of the cognitive and motor benefits of exercise. However, the neural networks underlying these benefits remain poorly understood. Our study systematically analyzed exercise-associated changes in metabolic connectivity in the cortico-basal ganglia-thalamic network during the performance of a new motor task, with regions-of-interest defined based on mesoscopic domains recently defined in the mouse brain structural connectome. Mice were trained on a motorized treadmill for six weeks or remained sedentary (control), thereafter undergoing [14C]-2-deoxyglucose metabolic brain mapping during wheel walking. Regional cerebral glucose uptake (rCGU) was analyzed in 3-dimensional brains reconstructed from autoradiographic brain sections using statistical parametric mapping. Metabolic connectivity was assessed by calculating inter-regional correlation of rCGU cross-sectionally across subjects within a group. Compared to controls, exercised animals showed broad decreases in rCGU in motor areas, but increases in limbic areas, as well as the visual and association cortices. In addition, exercised animals showed (i) increased positive metabolic connectivity within and between the motor cortex and caudoputamen (CP), (ii) newly emerged negative connectivity of the substantia nigra pars reticulata with the globus pallidus externus, and CP, and (iii) reduced connectivity of the prefrontal cortex (PFC). Increased metabolic connectivity in the motor circuit in the absence of increases in rCGU strongly suggests greater network efficiency, which is also supported by the reduced involvement of PFC-mediated cognitive control during the performance of a new motor task. Our study delineates exercise-associated changes in functional circuitry at the subregional level and provides a framework for understanding the effects of exercise on functions of the cortico-basal ganglia-thalamic network.


Connectome , Humans , Mice , Animals , Basal Ganglia/metabolism , Brain , Globus Pallidus , Prefrontal Cortex , Neural Pathways , Magnetic Resonance Imaging
10.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article En | MEDLINE | ID: mdl-37298594

Monocarboxylate transporter 8 (MCT8) and organic anion-transporting polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters relevant for the availability of TH in neural cells, crucial for their proper development and function. Mutations in MCT8 or OATP1C1 result in severe disorders with dramatic movement disability related to alterations in basal ganglia motor circuits. Mapping the expression of MCT8/OATP1C1 in those circuits is necessary to explain their involvement in motor control. We studied the distribution of both transporters in the neuronal subpopulations that configure the direct and indirect basal ganglia motor circuits using immunohistochemistry and double/multiple labeling immunofluorescence for TH transporters and neuronal biomarkers. We found their expression in the medium-sized spiny neurons of the striatum (the receptor neurons of the corticostriatal pathway) and in various types of its local microcircuitry interneurons, including the cholinergic. We also demonstrate the presence of both transporters in projection neurons of intrinsic and output nuclei of the basal ganglia, motor thalamus and nucleus basalis of Meynert, suggesting an important role of MCT8/OATP1C1 for modulating the motor system. Our findings suggest that a lack of function of these transporters in the basal ganglia circuits would significantly impact motor system modulation, leading to clinically severe movement impairment.


Basal Ganglia , Organic Anion Transporters , Symporters , Adult , Humans , Basal Ganglia/metabolism , Brain/metabolism , Interneurons/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neurons/metabolism , Organic Anion Transporters/metabolism , Symporters/genetics , Symporters/metabolism , Thalamus/metabolism , Thyroid Hormones/metabolism
11.
Neuropharmacology ; 235: 109569, 2023 09 01.
Article En | MEDLINE | ID: mdl-37142158

Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the ßγ subunits released from G proteins in response to receptor activation or other mechanisms. Here, we discuss the interactions between (i) mGlu1 and GABAB receptors in cerebellar Purkinje cells; (ii) mGlu2 and 5-HT2Aserotonergic receptors in the prefrontal cortex; (iii) mGlu5 and A2A receptors or mGlu5 and D1 dopamine receptors in medium spiny projection neurons of the indirect and direct pathways of the basal ganglia motor circuit; (iv) mGlu5 and A2A receptors in relation to the pathophysiology of Alzheimer's disease; and (v) mGlu7 and A1 adenosine or α- or ß1 adrenergic receptors. In addition, we describe in detail a novel form of non-heterodimeric interaction between mGlu3 and mGlu5 receptors, which appears to be critically involved in mechanisms of activity-dependent synaptic plasticity in the prefrontal cortex and hippocampus. Finally, we highlight the potential implication of these interactions in the pathophysiology and treatment of cerebellar disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, l-DOPA-induced dyskinesias, stress-related disorders, and cognitive dysfunctions. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Alzheimer Disease , Parkinson Disease , Humans , Levodopa , Parkinson Disease/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Basal Ganglia/metabolism
12.
Stem Cell Res ; 69: 103083, 2023 06.
Article En | MEDLINE | ID: mdl-37003180

Mutations in tubulin alpha 4a (TUBB4A) result in a spectrum of leukodystrophies, including Hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC), resulting from a recurring mutation p.Asp249Asn (TUBB4AD249N). H-ABC presents with dystonia, motor and cognitive impairment and pathological features of hypomyelination and loss of cerebellar and striatal neurons. We have generated three induced pluripotent stem cell (iPSC) lines from fibroblast and peripheral blood mononuclear cells (PBMCs) of individuals with TUBB4AD249N mutation. The iPSCs were assessed to confirm a normal karyotype, pluripotency, and trilineage differentiation potential. The iPSCs will allow for disease modeling, understanding mechanisms and testing of therapeutic targets.


Induced Pluripotent Stem Cells , Humans , Atrophy/pathology , Basal Ganglia/metabolism , Basal Ganglia/pathology , Cerebellum/metabolism , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Mutation/genetics , Phenotype , Tubulin/genetics , Tubulin/metabolism
13.
Brain Res ; 1809: 148349, 2023 06 15.
Article En | MEDLINE | ID: mdl-36972837

Overactivity of the corticostriatal glutamatergic pathway is documented in Parkinson's disease (PD) and stimulation of presynaptic metabotropic glutamate (mGlu) receptors 4 on these striatal afferents inhibits glutamate release normalizing neuronal activity in the basal ganglia. Moreover, mGlu4 receptors are also expressed in glial cells and are able to modulate glial function making this receptor a potential target for neuroprotection. Hence, we investigated whether foliglurax, a positive allosteric modulator of mGlu4 receptors with high brain exposure after oral administration, has neuroprotective effects in MPTP mice to model early PD. Male mice were treated daily from day 1 to 10 with 1, 3 or 10 mg/kg of foliglurax and administered MPTP on the 5th day then euthanized on the 11th day. Dopamine neuron integrity was assessed with measures of striatal dopamine and its metabolites levels, striatal and nigral dopamine transporter (DAT) binding and inflammation with markers of striatal astrocytes (GFAP) and microglia (Iba1). MPTP lesion produced a decrease in dopamine, its metabolites and striatal DAT specific binding that was prevented by treatment with 3 mg/kg of foliglurax, whereas 1 and 10 mg/kg had no beneficial effect. MPTP mice had increased levels of GFAP; foliglurax treatment (3 mg/kg) prevented this increase. Iba1 levels were unchanged in MPTP mice compared to control mice. There was a negative correlation between dopamine content and GFAP levels. Our results show that positive allosteric modulation of mGlu4 receptors with foliglurax provided neuroprotective effects in the MPTP mouse model of PD.


1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Antiparkinson Agents , Dopaminergic Neurons , Neuroprotective Agents , Receptors, Metabotropic Glutamate , Animals , Male , Mice , Allosteric Regulation/drug effects , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/pharmacology , Basal Ganglia/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dose-Response Relationship, Drug , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism , Astrocytes/metabolism , Microglia/metabolism , Neostriatum/drug effects , Neostriatum/metabolism
14.
ASN Neuro ; 15: 17590914231158218, 2023.
Article En | MEDLINE | ID: mdl-36890725

SUMMARY STATEMENT: HIV/HIV-1 Tat and morphine independently increase pathologic phosphorylation of TAR DNA binding protein 43 in the striatum. HIV- and opioid-induced pathologic phosphorylation of TAR DNA binding protein 43 may involve enhanced CK2 activity and protein levels.


HIV Infections , HIV-1 , Humans , Phosphorylation , Casein Kinase II/metabolism , Analgesics, Opioid/pharmacology , Analgesics, Opioid/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , DNA-Binding Proteins , HIV-1/metabolism , Basal Ganglia/metabolism , Protein Binding
16.
Parkinsonism Relat Disord ; 108: 105288, 2023 03.
Article En | MEDLINE | ID: mdl-36724569

INTRODUCTION: The impairment of nigrostriatal dopaminergic network is a core feature of dementia with Lewy bodies (DLB). The involvement and reconfiguration of extranigrostriatal dopaminergic circuitries in the DLB continuum is still theme of debate. We aim to investigate in vivo the dynamic changes of local and long-distance dopaminergic networks across DLB continuum. METHODS: Forty-nine patients (including 29 with dementia and 20 prodromal cases) and fifty-two controls entered the study. Each subject underwent a standardized clinical and neurological examination and performed Brain SPECT to measuring brain dopamine transporter (DAT) density. Spatially normalized images underwent the occipital-adjusted specific binding to obtain parametric data. The ANCOVA was applied to assess 123I-FP-CIT differences between pDLB, overt-DLB and CG, considering age, gender, and motor impairment as variables of no interest. Between-nodes correlation analysis measured molecular connectivity within the ventral and dorsal dopaminergic networks. RESULTS: Prodromal DLB and DLB patients showed comparable nigrostriatal deficits in basal ganglia regions compared with CG. Molecular connectivity analyses revealed extensive connectivity losses, more in ventral than in dorsal dopaminergic network in DLB dementia. Conversely, the prodromal group showed increased connectivity compared to CG, mostly putamen-thalamus-cortical and striatal-cortical connectivity. CONCLUSIONS: This study indicates a comparable basal ganglia deficit in nigrostriatal projections in DLB continuum and supports a different reorganization of extra-striatal dopaminergic connectivity in the prodromal phases of DLB. The shift from an increased to a decreased bilateral putamen-thalamus-cortex connectivity might be a hallmark of transition from prodromal to dementia DLB stages.


Alzheimer Disease , Lewy Body Disease , Humans , Lewy Body Disease/metabolism , Basal Ganglia/metabolism , Corpus Striatum/metabolism , Brain/metabolism , Thalamus/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Alzheimer Disease/metabolism
17.
Mol Biol Rep ; 50(5): 4535-4549, 2023 May.
Article En | MEDLINE | ID: mdl-36853472

Parkinson's disease is a progressive neurodegenerative disorder caused by the degeneration of dopaminergic neurons. This leads to the pathogenesis of multiple basal ganglia-thalamomotor loops and diverse neurotransmission alterations. Dopamine replacement therapy, and on top of that, levodopa and l-3,4-dihydroxyphenylalanine (L-DOPA), is the gold standard treatment, while it develops numerous complications. Levodopa-induced dyskinesia (LID) is well-known as the most prominent side effect. Several studies have been devoted to tackling this problem. Studies showed that metabotropic glutamate receptor 5 (mGluR5) antagonists and 5-hydroxytryptamine receptor 1B (5HT1B) agonists significantly reduced LID when considering the glutamatergic overactivity and compensatory mechanisms of serotonergic neurons after L-DOPA therapy. Moreover, it is documented that these receptors act through an adaptor protein called P11 (S100A10). This protein has been thought to play a crucial role in LID due to its interactions with numerous ion channels and receptors. Lately, experiments have shown successful evidence of the effects of P11 blockade on alleviating LID greater than 5HT1B and mGluR5 manipulations. In contrast, there is a trace of ambiguity in the exact mechanism of action. P11 has shown the potential to be a promising target to diminish LID and prolong L-DOPA therapy in parkinsonian patients owing to further studies and experiments.


Dyskinesia, Drug-Induced , Parkinson Disease , Humans , Levodopa/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/metabolism , Dyskinesia, Drug-Induced/pathology , Parkinson Disease/drug therapy , Basal Ganglia/metabolism , Basal Ganglia/pathology , Dopamine/metabolism , Dopamine/pharmacology , Dopamine/therapeutic use
18.
Nat Commun ; 14(1): 282, 2023 01 17.
Article En | MEDLINE | ID: mdl-36650127

Striatal projection neurons (SPNs), which progressively degenerate in human patients with Huntington's disease (HD), are classified along two axes: the canonical direct-indirect pathway division and the striosome-matrix compartmentation. It is well established that the indirect-pathway SPNs are susceptible to neurodegeneration and transcriptomic disturbances, but less is known about how the striosome-matrix axis is compromised in HD in relation to the canonical axis. Here we show, using single-nucleus RNA-sequencing data from male Grade 1 HD patient post-mortem brain samples and male zQ175 and R6/2 mouse models, that the two axes are multiplexed and differentially compromised in HD. In human HD, striosomal indirect-pathway SPNs are the most depleted SPN population. In mouse HD models, the transcriptomic distinctiveness of striosome-matrix SPNs is diminished more than that of direct-indirect pathway SPNs. Furthermore, the loss of striosome-matrix distinction is more prominent within indirect-pathway SPNs. These results open the possibility that the canonical direct-indirect pathway and striosome-matrix compartments are differentially compromised in late and early stages of disease progression, respectively, differentially contributing to the symptoms, thus calling for distinct therapeutic strategies.


Huntington Disease , Mice , Animals , Humans , Male , Huntington Disease/genetics , Huntington Disease/metabolism , Rodentia , Corpus Striatum/metabolism , Neurons/metabolism , Basal Ganglia/metabolism , Disease Models, Animal , Mice, Transgenic
19.
Curr Neuropharmacol ; 21(2): 183-201, 2023.
Article En | MEDLINE | ID: mdl-35339179

Calcium (Ca2+) plays a central role in regulating many cellular processes and influences cell survival. Several mechanisms can disrupt Ca2+ homeostasis to trigger cell death, including oxidative stress, mitochondrial damage, excitotoxicity, neuroinflammation, autophagy, and apoptosis. Voltage-gated Ca2+ channels (VGCCs) act as the main source of Ca2+ entry into electrically excitable cells, such as neurons, and they are also expressed in glial cells such as astrocytes and oligodendrocytes. The dysregulation of VGCC activity has been reported in both Parkinson's disease (PD) and Huntington's (HD). PD and HD are progressive neurodegenerative disorders (NDs) of the basal ganglia characterized by motor impairment as well as cognitive and psychiatric dysfunctions. This review will examine the putative role of neuronal VGCCs in the pathogenesis and treatment of central movement disorders, focusing on PD and HD. The link between basal ganglia disorders and VGCC physiology will provide a framework for understanding the neurodegenerative processes that occur in PD and HD, as well as a possible path towards identifying new therapeutic targets for the treatment of these debilitating disorders.


Basal Ganglia Diseases , Parkinson Disease , Humans , Calcium Channels/metabolism , Basal Ganglia Diseases/metabolism , Basal Ganglia Diseases/pathology , Neurons/metabolism , Basal Ganglia/metabolism , Parkinson Disease/metabolism , Calcium/metabolism
20.
J Mol Endocrinol ; 70(2)2023 02 01.
Article En | MEDLINE | ID: mdl-36445941

Basal ganglia calcification (BGC) is a common complication in hypoparathyroid patients, linked to hyperphosphatemia and altered vitamin-D and calcium homeostasis following conventional therapy. The pathogenesis of BGC in hypoparathyroidism is not clear. Recently, we developed an ex vivo model of BGC using rat-striatal cell culture in 10.0 mmol/L of ß-glycerophosphate (31.8 mg/dL phosphate). However, the effect of 1,25(OH)2 D, calcium, and milder phosphate excess on BGC in hypoparathyroidism is not known. This study describes two modified ex vivo models investigating pathogenesis of BGC in 'drug-naïve' and 'conventionally treated' hypoparathyroid state. The first modification involved striatal cells cultured in low concentration 1,25(OH)2D (16.0 pg/mL), ionized calcium(0.99 mmol/L), hPTH(1-34) (6.0 pg/mL), and 2.68 mmol/L (8.3 mg/dL) of phosphate akin to 'drug-naïve' state for 24 days. In second modification, striatal cells were exposed to 46.0 pg/mL of 1,25(OH)2D, normal ionized calcium of 1.17 mmol/L, and 2.20 mmol/L (6.8 mg/dL) of phosphate akin to 'conventionally treated' state. Striatal cell culture under 'drug-naïve' state showed that even 16.0 pg/mL of 1,25(OH)2D enhanced the calcification. In 'conventionally treated' model, striatal cell calcification was enhanced in 54% cases over 'drug-naïve' state. Calcification in 'conventionally treated' state further increased on increasing phosphate to 8.3 mg/dL, suggesting importance of phosphatemic control in hypoparathyroid patients. Striatal cells in 'drug-naïve' state showed increased mRNA expression of pro-osteogenic Wnt3a, Cd133,Vglut-1-neuronal phosphate-transporters, calcium-ion channel-Trvp2,Alp, and Collagen-1α and decreased expression of Ca-II. These models suggest that in 'drug-naïve' state, 1,25(OH)2D along with moderately elevated phosphate increases the expression of pro-osteogenic molecules to induce BGC. Although normalization of calcium in 'conventionally treated' state increased the expression of Opg, Osterix, Alp, and Cav2, calcification increased only in a subset, akin to variation in progression of BGC in hypoparathyroid patients on conventional therapy.


Calcitriol , Hypoparathyroidism , Animals , Rats , Basal Ganglia/metabolism , Basal Ganglia/pathology , Calcitriol/pharmacology , Calcium/metabolism , Hypoparathyroidism/drug therapy , Hypoparathyroidism/metabolism , Parathyroid Hormone/pharmacology , Phosphates/metabolism
...